Sufficient dimension reduction based on an ensemble of minimum average variance estimators
نویسندگان
چکیده
منابع مشابه
The Ratio-type Estimators of Variance with Minimum Average Square Error
The ratio-type estimators have been introduced for estimating the mean and total population, but in recent years based on the ratio methods several estimators for population variance have been proposed. In this paper two families of estimators have been suggested and their approximation mean square error (MSE) have been developed. In addition, the efficiency of these variance estimators are com...
متن کاملLikelihood-based Sufficient Dimension Reduction
We obtain the maximum likelihood estimator of the central subspace under conditional normality of the predictors given the response. Analytically and in simulations we found that our new estimator can preform much better than sliced inverse regression, sliced average variance estimation and directional regression, and that it seems quite robust to deviations from normality.
متن کاملSufficient Dimension Reduction via Inverse Regression: A Minimum Discrepancy Approach
A family of dimension-reduction methods, the inverse regression (IR) family, is developed by minimizing a quadratic objective function. An optimal member of this family, the inverse regression estimator (IRE), is proposed, along with inference methods and a computational algorithm. The IRE has at least three desirable properties: (1) Its estimated basis of the central dimension reduction subspa...
متن کاملSufficient Dimension Reduction Summaries
Observational studies assessing causal or non-causal relationships between an explanatory measure and an outcome can be complicated by hosts of confounding measures. Large numbers of confounders can lead to several biases in conventional regression based estimation. Inference is more easily conducted if we reduce the number of confounders to a more manageable number. We discuss use of sufficien...
متن کاملTensor sufficient dimension reduction.
Tensor is a multiway array. With the rapid development of science and technology in the past decades, large amount of tensor observations are routinely collected, processed, and stored in many scientific researches and commercial activities nowadays. The colorimetric sensor array (CSA) data is such an example. Driven by the need to address data analysis challenges that arise in CSA data, we pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 2011
ISSN: 0090-5364
DOI: 10.1214/11-aos950